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We study numerically the autocatalytic irreversible reaction A+B→2A on a one-dimensional lattice for the
case of subdiffusive reactants performing symmetric continuous-time random walks with the power-law wait-
ing time density function ��t�� t−1−� with 0���1 in a large range of other relevant parameters. We show that
the propagation failure previously found by the same authors �Phys. Rev. E 78, 011128 �2008�� essentially
corresponds to a propagation of a front of a stable form at a velocity which decays with time.

DOI: 10.1103/PhysRevE.79.041135 PACS number�s�: 05.40.Fb, 82.40.�g

Reaction-subdiffusion phenomena have attracted much at-
tention in the last few years both because of the experimental
relevance for reactions taking place in porous media, com-
plex biological structures, and geological formations, as well
as due to theoretical and mathematical challenges posed by
the description of such phenomena. Several recent works
were dedicated to the theoretical description of Turing pat-
terns and of fronts in such systems �1–7�. Depending on the
special assumptions on the reaction and on the behavior of
the corresponding waiting times after the elementary act of
reaction the behavior of systems under subdiffusion might
either resemble the case of normal diffusion or strongly dif-
fer from it. The theoretical discussion of a special model of
Ref. �3� has shown, for example, that the latter is the case for
the irreversible autocatalytic reaction A+B→2A, which un-
der normal diffusion is described by the Fisher-Kolmogorov-
Petrovsky-Piskunov �FKPP� equation �8,9�. A+B→2A is the
simplest autocatalytic reaction scheme and is an important
building block of several more complicated multistep reac-
tions. It was introduced in 1937 to describe the propagation
of a favorable gene in a population and is known �under a
broad class of initial conditions� to lead to a propagation of a
stable pulled front keeping its form and sweeping through
the system at a constant velocity equal to the minimal veloc-
ity of the stable front’s propagation �10,11�. Reference �3�
showed that the minimal velocity of a front’s propagation
under subdiffusion is zero, which fact was interpreted as a
propagation failure. The important question however is what
does the absence of the stable front propagating at a constant
velocity really mean. Here several scenarios can come in
mind. For example, a front may always exist and even pos-
sess a constant form, but decelerate or accelerate as it is the
case in the superdiffusive situation of Ref. �12�, or the front
does not possess any constant limiting form and, for ex-
ample, flattens and fills the whole system. The aim of the
present work is to understand what happens with such a front
with the help of numerical simulations of the corresponding
system.

In what follows we simulate numerically the irreversible
A+B→2A reaction on a one-dimensional �1D� lattice �chain
of sites� of length L with lattice spacing a=1. Initially, the B
particles are distributed homogeneously on the sites of the
lattice with concentration �average number of particles per

site� c. At the first step of simulations a single A particle is
introduced at the left end of the lattice, being the seed of the
transformation.

All particles perform unbiased continuous-time random
walks �CTRWs� with the waiting times at a site following the
probability density function �pdf�,

��t� =
�

�1 + t�1+� �1�

with 0���1. A particle arriving at lattice site i at some
instance of time stays there for a sojourn time t given by Eq.
�1� and then makes a jump to the neighboring site to the left
or to the right with equal probabilities. The pdf �Eq. �1�� does
not possess the first moment and therefore leads to the sub-
diffusion of particles. The particles are phantom in the sense
that they do not possess any excluded volume. The particles
of the same type do not interact at all; the particles of differ-
ent types may react according to the A+B→2A reaction
scheme when encountered at the same site.

We consider two different situations with respect to the
probability of such reaction:

�1� A simpler one: when an A particle encounters B par-
ticles at site i, the reaction takes place immediately, i.e., the
B particles present at site i are immediately converted into A.

�2� A generic one: reaction with a constant rate. The reac-
tion attempts take place at constant intervals of time �tr=1,
the transformation of B into A at a site i takes place with
probability pNA�i�NB�i� per attempt with NA�i� being the
number of A particles at site i and NB�i� the number of B
particles at site i, respectively. If such a reaction takes place
a B particle at a site �if more than one� is chosen at random
and transformed into A. This model corresponds to a system
discussed in Ref. �3� which at smaller scales consists of com-
partments �here represented by lattice sites� in which the re-
action follows the usual kinetic laws. The classical reaction
rate would be k= p /�tr, i.e., equals p in the units system
adopted here.

The first case considered here corresponds to the situation
simulated in Ref. �13� for normal diffusion; much of the
discussions carried out in that work for the normal case can
be immediately transferred to the case of anomalous diffu-
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sion as well. The second case corresponds to the situation
theoretically considered in Ref. �3�. We note that A and B
particles are considered the same in all respects except for
their chemical nature, and that the fact of changing this na-
ture does not influence the waiting time of a particle at a site.

Let us first recover the results for the Markovian case of
normal diffusion �14�. Here two different limiting cases of
the front propagation can be considered, which are essen-
tially the limits of very high and of very low concentrations.
Let us consider the reaction taking place in a one-
dimensional system �e.g., in a very thin capillary�, with given
one-dimensional concentration c of reactants, �c�= �L−1�. The
classical FKPP theory of the A+B→2A reaction would then
predict the propagation of a stationary front of width
w��D /kc moving at a constant velocity v=2�Dkc �here k is
the one-dimensional reaction rate, �k�= �L /T��. The width of
the front has to be compared to the typical interparticle dis-
tance l=c−1. The classical theory is applicable if w� l, i.e.,
for c�k /D. In the opposite case, when the predicted front’s
width gets smaller than the typical interparticle distance, the
mean-field FKPP theory breaks down. In this case one has to
do with fluctuation-dominated regime. In the case of large
enough k �or small enough concentrations� the velocity of the
front gets to be v�cD, i.e., is considerably slower than in
the classical picture �13�. Thus the classical result is correct
for high concentrations or/and small reaction rates �14�
�c→� and k→0�. This fact was theoretically explained in
Ref. �15� �see Ref. �11� for a review�.

Let us now turn to the case of anomalous diffusion. The
CTRWs with the waiting time pdf lacking the first moment
are nonstationary and nonergodic �16�. This fact needs to be
taken into account in the simulations and makes it impossible
to use effective algorithms of the Gillespie type based on the
Markovian property of normal diffusion. To implement a
multiparticle CTRW process we proceed as follows. We first
label all particles �independent on their A or B nature� and
generate a sequence of jumping times for each of them by
adding up the waiting times for jumps following from Eq. �1�
�one takes care, of course, that the maximal jumping time for
each particle exceeds the overall time of simulation�. Then,
all jumping times are sorted and stored. For the reaction with
probability one an event-driven algorithm can be used: we
check what is the next particle to jump, let it jump on the
chain, and rename the particles according to the reaction
scheme if A and B particles occur at the same site. For the
case of the reaction with finite rate we check for reactions at
time intervals �tr=1 at each site parallel to the jumps of the
particles.

Let us now turn to the results of our simulations. The
reaction-on-contact model gives us the simplest situation
which, due to the possibility to use the event-driven algo-
rithm, can be simulated relatively fast. In our simulations of
the reaction-on-contact model, we set up a chain of length
L=10 000 sites with concentration c=0.2.

Since the overall concentration of particles in reaction
stays constant, the position of the reaction front can be de-
fined by the total number of A particles NA�t� produced in the
reaction: x=NA�t� /c. This quantity is shown in Fig. 1 for
different values of parameters � in the pdf �Eq. �1��, as
well as for the exponential waiting time distribution

��t�=	−1 exp�−t /	� �the Markovian case� formally corre-
sponding to �=1. Plotting NA�t� as a function of time on
double-logarithmic scales we readily infer that the NA�t� fol-
lows the power law

NA�t� � t
. �2�

In Fig. 1, it can be observed that the estimated values
of 
 are all smaller than one, i.e., that NA�t� does not
grow at a constant rate. The estimated values of 
 following
from the least-squares fit are �=0.9��� :
=0.88�0.01,
�=0.8��� :
=0.82�0.02, and �=0.7��� :
=0.70�0.02.

The Markovian setting �see the inset of the figure� is the
only case where NA�t� grows linearly in t, i.e., the only case
where constant front velocities are observed. This situation
can also serve as the test of our algorithm since all findings
of Ref. �13� �e.g., the linear concentration dependence of the
front velocity and its linear dependence on 1 /	� are
reproduced: the line in the inset corresponds to the fit
NA�t�=a+bt with a=5.8 and b=0.206. In all other cases the
behavior is consistent with the assumption NA�t�� t�, which
means that the velocity of the front is decaying with time as
v� t�−1. Thus, no stable front propagation with a constant
velocity occurs. We recall however that the one-dimensional
reaction where the reaction takes place with probability of 1
on contact is not the case that is described by the FKPP
equation even in the Markovian case since this regime is
fluctuation dominated.

Let us now turn to the case when reaction takes place
with low probability p�1 per unit time. The position
of the front shows again a power-law dependence on
time t with an exponent that corresponds to the waiting
time parameter �. The results for L=10 000, c=0.3, and re-
action probability p=0.1 are given in Fig. 2. Again, the pure
power-law fit �Eq. �2�� adequately describes the data; the
fitting procedure returns the following estimated values of 

for different values of �: �=0.9��� :
=0.874�0.002,

10
4

10
5

10
6

10
1

10
2

10
3

10
4

t

N
A
(t

)

0 1000 2000 3000

200

400

600

t

N
A
(t

)

FIG. 1. �Color online� Number of A particles as a function of
time in the reaction-on-contact model with subdiffusive motion for
different values of �=0.9���, 0.8 ���, and 0.7��� �see the text for
details�. Note the double-logarithmic scales. The lines correspond to
the power-law fits �Eq. �2�� with the values of 
 listed in the text.
The inset corresponds to the case of normal diffusion �exponential
waiting time distribution with 1 /	=1�.
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�=0.8��� :
=0.800�0.003, �=0.7��� :
=0.73�0.01,
and �=0.6�+� :
=0.63�0.02.

The results presented in the figure show that ��
 and
hence the velocity of the front again goes as v� t�−1. The
values of the concentration c and of the reaction probability
p used in Fig. 2 lie however in the domain where consider-
able differences from the classical FKPP kinetics in 1D are
still observed in the Markovian case due to fluctuation ef-
fects and to low dimensionality of the system.

To check whether the propagation failure still occurs in
the “classical” regime with subdiffusive motion we chose the
values of parameters c=10 and p=0.006, for which the be-
havior for the Markovian system is well described by classi-
cal FKPP results. Figure 3 represents the results obtained by
examining the number of A particles NA�t�. The slowing
down of the front corresponding to the propagation failure
can be observed from the least-squares fits in the last decade
of data represented. These fits are shown by solid lines.
Again, the estimated values 
 for the different values of
�=0.8,0.7,0.6 are all significantly smaller than 1: �
=0.8��� :
=0.906�0.002, �=0.7��� :
=0.849�0.001,
and �=0.6��� :
=0.776�0.001. Thus, in the subdiffusion

case the reaction front in the irreversible A+B→2A reaction
also slows down, and the velocity of its propagation tends to
zero, in accordance with the analytical findings of Ref. �3�.
Looking at the exponents in this case we readily infer that all
of them are very close to the value of 
=1 /2+� /2. This
means that the front’s velocity decays as a function of time,
namely, approximately as v�t�� t��−1�/2.

Both our findings, the one for the fluctuation-dominated
regime and the one for the classical one, have therefore a
very simple interpretation within the old-fashioned mean-
fieldlike picture �advocated by Batchelor in case of turbulent
diffusion� describing the corresponding complex transport
process via a mean time-dependent diffusion coefficient
D�t�. For a continuous-time random walk with the waiting
time distribution characterized by the exponent �, the mean-
squared displacement of a single particle goes as �x2�t��� t�,
i.e., behaves as if it could be described as a diffusive process
with the diffusion coefficient D�t�� t�−1. The behavior of the
corresponding front velocities follows this behavior of the
diffusion coefficient, i.e., v�t��D�t�� t�−1 in the fluctuation-
dominated regime of small concentrations and high reaction
rates and v�t���D�t�� t��−1�/2 in the opposite classical limit-
ing case.

Let us now turn to the shape of the front. For the reaction
on contact the definition of the front’s position and “shape”
does not pose any problems, because the front is sharp and is
essentially situated between the rightmost A and the leftmost
B particle and its form is essentially given by the probability
distribution of the distance between these particles �13�. For
p�1 this is no more the case, and the definition of the
front’s form poses a much more subtle task since it involves
the operational definition of a comoving frame �14�.

Let us first recall some results for the Markovian regime.
The problem with calculating the front’s profile is that for
each realization of the front the position at a given time t is
different due to statistical Gaussian fluctuations of its veloc-
ity. By just averaging over different realizations �i.e., defin-
ing the comoving frame as the one moving with the mean
velocity of the front�, one gets a front form which is an error
function with the width growing with time and which is
much broader than the profile in each single realization. The
way leading to a correct form �tending to a FKPP one in the
case when the equation is valid� corresponds to a definition
of a comoving frame for each separate realization and then
averaging the results. As such a frame, the position of the
rightmost A particle can serve. This is exactly the approach
we use here.

Thus, in each realization the relative particles’ positions
with respect to the rightmost A particle are calculated at a
given time, and then the densities in such realigned fronts are
averaged over different realizations. In Fig. 4 two front pro-
files are shown. The dashed lines, each averaged over 400
processes, correspond to front forms at different times
t=1600,1700, . . . ,1900 �the system is running until t=2000�
for the subdiffsive case with �=0.6, c=10, and p=0.006.
The solid lines give the front forms for the same model
�c=10, p=0.006� with �=0.9 at times t=900, . . . ,1900. In
the inset figure the Markovian reaction-diffusion case,
corresponding to the exponential waiting time pdf ��t�
= �1 /	�exp�−t /	� for 1 /	=1, c=10, and p=0.006 at the same
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FIG. 2. �Color online� Number of A particles depending on time
�logarithmic scale� for the reaction with probability p=0.1 per unit
time. The motion of particles is subdiffusive, which is reflected by
the power-law waiting time pdf �1�. The results correspond to dif-
ferent values of �=0.9���, 0.8 ���, 0.7 ���, and 0.6�+�. The lines
represent the power-law fits �Eq. �2��.
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FIG. 3. �Color online� NA�t� in the classical regime with c=10
and p=0.006 for different �=0.8���, 0.7 ���, and 0.6 ���. The
solid lines represent the fits �see text for details�.
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times, each line averaged over 297 processes �the value of 	
is chosen to have the fronts of approximately the same over-
all width� is shown. The results of the reaction-diffusion sys-
tem were plotted in a separate frame, since the two situations
are not comparable. The reason for this is the fundamental
difference in the waiting time distributions.

In all cases the front forms do not show visible changes
with time, i.e., the overall situation corresponds to a propa-
gation of the essentially stationary front at a velocity which
is constant in the Markovian diffusion situation and is decay-
ing with time for subdiffusion. The fact that the front profile
does not change with time has also been confirmed for lower
concentrations c and higher rates p, i.e., in the regime when
the FKPP does not work, and its subdiffusive analog may
also break down.

It is also interesting to discuss the behavior of the front’s
forms at shorter times, still far from any stationary propaga-
tion regime. In Fig. 5 the front profile of the subdiffusive
case with �=0.9, c=10, and p=0.006 is given for t=200,
500, and 1000. The fronts, specifically the one at t=200, are
not yet well developed. Still when realigned, they show the
same form of their leading edge. The circles show the posi-
tion of the origin �left-hand end of the system� after such

realignement: right circle shows the end of the front at
t=200 and left circle the end of the front at t=500. One
readily infers that the foremost zone of the front develops
practically immediately in its final form and does not show
any considerable changes during the further evolution. We
stress that the same behavior is observed also in the case of
normal Markovian diffusion �see the inset�.

Let us summarize our findings. We carried out numerical
simulations of an irreversible A+B→2A reaction under sub-
diffusion in different domains of parameters. The results of
the simulations show that the propagation failure in a subdif-
fusive system found theoretically in our previous work does
not correspond to the arrest or to spreading out of the front.
On the contrary, the reaction front attains a constant form
and propagates through the system. However, the velocity of
the propagating front decays with time. The corresponding
decay can be qualitatively described by assuming the effec-
tive time-dependent diffusion coefficient D�t�� t�−1 in the
corresponding expressions for the velocity.
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FIG. 4. Front form for �=0.9 �solid lines� at times
t=900,1000, . . . ,1900 and for �=0.6 �dashed lines� at times
t=1600, . . . ,1900. The inset figure shows fronts observed from a
system with exponential waiting time pdf �1 /	=1� at times
t=900,1000, . . . ,1900.
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FIG. 5. �Color online� Realigned front form at different times
t=200,500,1000 with �=0.9, c=10, p=0.006, and L=1000. The
circles �from left to right� show the end of the front at t=500 and
t=200. The inset shows the same behavior for the case of Markov-
ian diffusion.
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